Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(22)2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2116228

ABSTRACT

Interferons (IFNs) are pleiotropic cytokines originally identified for their antiviral activity. IFN-α and IFN-ß are both type I IFNs that have been used to treat neurological diseases such as multiple sclerosis. Microglia, astrocytes, as well as neurons in the central and peripheral nervous systems, including spinal cord neurons and dorsal root ganglion neurons, express type I IFN receptors (IFNARs). Type I IFNs play an active role in regulating cognition, aging, depression, and neurodegenerative diseases. Notably, by suppressing neuronal activity and synaptic transmission, IFN-α and IFN-ß produced potent analgesia. In this article, we discuss the role of type I IFNs in cognition, neurodegenerative diseases, and pain with a focus on neuroinflammation and neuro-glial interactions and their effects on cognition, neurodegenerative diseases, and pain. The role of type I IFNs in long-haul COVID-associated neurological disorders is also discussed. Insights into type I IFN signaling in neurons and non-neuronal cells will improve our treatments of neurological disorders in various disease conditions.


Subject(s)
COVID-19 , Interferon Type I , Nervous System Diseases , Humans , Neuroinflammatory Diseases , Nervous System Diseases/drug therapy , Interferon-alpha , Interferon-beta , Pain , Post-Acute COVID-19 Syndrome
2.
Front Immunol ; 12: 783725, 2021.
Article in English | MEDLINE | ID: covidwho-1554650

ABSTRACT

Interferons (IFNs) are cytokines that possess antiviral, antiproliferative, and immunomodulatory actions. IFN-α and IFN-ß are two major family members of type-I IFNs and are used to treat diseases, including hepatitis and multiple sclerosis. Emerging evidence suggests that type-I IFN receptors (IFNARs) are also expressed by microglia, astrocytes, and neurons in the central and peripheral nervous systems. Apart from canonical transcriptional regulations, IFN-α and IFN-ß can rapidly suppress neuronal activity and synaptic transmission via non-genomic regulation, leading to potent analgesia. IFN-γ is the only member of the type-II IFN family and induces central sensitization and microglia activation in persistent pain. We discuss how type-I and type-II IFNs regulate pain and infection via neuro-immune modulations, with special focus on neuroinflammation and neuro-glial interactions. We also highlight distinct roles of type-I IFNs in the peripheral and central nervous system. Insights into IFN signaling in nociceptors and their distinct actions in physiological vs. pathological and acute vs. chronic conditions will improve our treatments of pain after surgeries, traumas, and infections.


Subject(s)
Acute Pain/immunology , Chronic Pain/immunology , Interferon Type I/metabolism , Interferon-gamma/metabolism , Neuroinflammatory Diseases/immunology , Acute Pain/pathology , Animals , Chronic Pain/pathology , Disease Models, Animal , Humans , Neuroglia/cytology , Neuroglia/immunology , Neuroglia/pathology , Neuroinflammatory Diseases/pathology , Nociceptors/immunology , Nociceptors/metabolism , Receptors, Interferon/metabolism , Signal Transduction/immunology , Spinal Cord/cytology , Spinal Cord/immunology , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL